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ABSTRACT 
We develop and analyze affect detectors for four affective states: 
confidence, excitement, frustration and interest. We utilize easy to 
implement self-report based “ground truth” measurements of 
affect within a tutor, and model them as continuous variables that 
are later discretized into positive, neutral, and negative valence 
classifications; this  distinguishes our work from detectors which 
model affective states as binary. We explore the opportunities and 
limitations of cross validation with regard to potentially distinct 
sample groups.  
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1. INTRODUCTION 
One key factor that influences students’ academic success is their 
emotions and general affective experience while learning. For 
instance, positive affect has a facilitative effect on cognitive 
functioning in general [1], and improved performance on creative 
problem solving in particular [2, 3]. Moreover, students who are 
interested in an activity persevere in the face of failure, invest 
time when needed, and engage in mindful processing [4]. Even 
some emotions traditionally viewed as negative can be beneficial 
– for example, confusion is associated with learning under certain 
conditions [5]. In contrast, the affective state of boredom reduces 
task performance [6], increases ineffective behaviors such as 
gaming the system [7], and tends to be persistent once 
experienced [7]. 

 

Given the pivotal role that affect plays in education, both in short-
term performance outcomes and in long-term career choices, there 
is growing interest in developing educational technologies that 
can recognize and respond to student affect. Here, we focus on the 
first thrust, namely affect recognition.  
The process of modeling motivation and emotion is summarized 
in Figure 1, which shows how emotions are highly dependent on 
context, and are expressed in behaviors. Thus, when designing 
models to assess student emotion, it is essential to empirically 
understand which factors impact a student’s emotional state, and 
how the affective state is revealed by the student in terms of 
subsequent actions and behaviors.  

 

 

 
Figure 1:  Model of Student Emotion while Learning 
(arrows indicate dependence, causality, precedence). A 
student’s emotion while learning (grey frame) is originally 
unknown and hidden. It is influenced by the “student’s 
baggage” (initial achievement, affective predisposition) and 
recent history of the student in the software (tutor moves or 
student actions). This article focuses on the top boxes: how 
student baggage and recent history help to predict current 
emotional states. 
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One approach to modeling affect, summarized in a recent review 
[8], pertains to using sensing devices. For instance, in our past 
work, we have created models of affect using data from a camera, 
pressure mouse, skin conductance bracelet, and pressure  chair 
cushions, in conjunction with data coming from a student’s 
interaction with an intelligent tutoring system [9-11]. The 
subsequent models achieved 85% accuracy when compared to the 
students’ self-reported emotion. Muldner et al. [12] used data 
from a subset of these sensing devices plus an eye tracker to 
detect moments of delight during instructional activities. D’Mello 
et al. [13] used dialog and posture features to model affective 
states. In Conati’s model [14], affect is modeled using one sensor 
modality, namely an EEG, in addition to interaction features [15]. 
While this research highlights the utility of sensors for affect 
recognition, they can not be widely disseminated in schools where 
the tutoring systems are used, though this may not be true in the 
future. Data collection is thus more challenging beyond lab 
studies. Thus, researchers have begun exploring sensor free 
affective detection. For instance, Baker et al. [16] used only data 
from students’ interaction with a tutor to model affective states 
such as frustration.  
The work reported in this paper adds to research on sensor-free 
affective models. Specifically, our goal is to better understand 
contextual predictors of student emotion, and to generate models 
that use the context in which student emotion occurs to predict 
this emotion, based on student behaviors within the software. To 
replace the rich physiological information that sensors provided, 
we focus on feature engineering, such as summaries of “recent 
history” of student actions. Additionally, our second goal was 
understand the utility of students’ affective predispositions –
attitudes, general values, preferences, and self-efficacy for the 
domain – for affect detection (see Figure 1). Last but not least, we 
analyze the generalizability of our affect detectors to different 
populations of students to other students in new schools. 

2. METHODS 

2.1 Participants 
We used three data sets to train and test ten separate models. 

2009 Data Set. An affect detector was built and tested using 295 
students, 7th, 8th, 9th and 10th graders from two rural area 
schools in Massachusetts in the Spring of 2009, using six fold 
student level batch cross validation [17]. On average, 1138 
instances (problem-student interactions) were split across six 
batches used to train and test each affect model. 

2011 Data Set. An affect detector was built and tested using 123 
students, 7th and 8th graders from a third rural area school in 
Massachusetts in 2011, using three fold student level batch cross 
validation [17]. On average, 120 instances (problem-student 
interactions) were split across three batches and used to train and 
test each affect model. 

2013 Data Set. An affect detector was built and tested using 43 
students, 7th, and 8th graders from two schools in California and 
Arizona in the Summer of 2013, using two fold student level 
batch cross validation [17]. On average, 76 instances (problem-
student interactions) were split across two batches and used to 
train and test each affect model. 

 

2.2 Wayang Outpost 
The test-bed for this research was Wayang Outpost  (see Figure 
2). Developed at UMass-Amherst, this tutor shows evidence of 
promoting effective math learning, has been used by tens of 
thousands of students in the United States and has consistently 
shown significant learning gains, e.g., on mathematics tests (an 
increase of 12% from pre- to post-test after only 4 class periods), 
and on state standard exams (92%) as compared to students not 
using Wayang (76%) [11, 18, 19]. Students using Wayang have 
also improved more on MAP scores compared to control groups 
(MAP is a national test of Northwest Evaluation Association on 
specific topics). 

2.2.1 Pedagogical Approach 
The pedagogical approach of the Wayang Tutor is based on 
cognitive apprenticeship [20] and mastery learning. Cognitive 
apprenticeships are designed to bring tacit processes into the 
open, so that students can observe, enact, and practice them with 
help from the teacher. This process involves several phases: 
modeling (introduction to the topic via worked-out examples, 
making steps explicit, and working through a problem aloud); 
practice with coaching (offering feedback and hints to sculpt 
performance to that of an expert's); scaffolding (putting into place 
strategies and methods to support student learning, offering hints 
as well as worked-out examples and tutorial videos); and 
reflection (self-referenced progress charts that allow students to 
look back and analyze their performance). 

 

Figure 2:  Learning companions use gestures to offer advice 
and encouragement. Students can ask for hints or click the 
“solve it” button. Animations, videos and worked-out 
examples add to the spoken hints about the steps in a 
problem. 
An important part of cognitive apprenticeship is the provision of 
materials just beyond what the learners can accomplish by 
themselves. Vygotsky referred to this as the Zone of Proximal 
Development (ZPD) and believed that fostering development 
within this zone leads to the most rapid learning [21]. We have 
operationalized and parameterized ZPD within the context of 
intelligent tutoring systems [19] and formalized a mechanism for 
adaptive problem selection that tailors the difficulty of subsequent 
math problems to past student performance and effort [19]. 
Wayang also identifies the most critical cognitive skills and 
predicts the likelihood of success on future problems related to 
these skills [9]. Wayang supports students by offering hints, 
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examples, short video tutorials, and animations [22-24]. Rich 
multimedia help is provided when students make mistakes or ask 
for help, following principles of multimedia learning theory [25].    

Teachers can access real-time assessments about individual 
student progress via the “Teacher Tools”, which allow them to 
spot and focus on students who need help, problems that are hard 
for everybody, and math skills with which the class as a whole is 
struggling.  

2.2.2 Affective Learning Companions.  
In our past work, we integrated into Wayang gendered and ethnic 
learning companions (male and female, White, Hispanic and 
African American), whom offered advice and encouragement by 
talking to students (see Figure 2 for a sample character). These 
companions can gesture and train attributions for 
“success/failure”, e.g., that intelligence is malleable, perseverance 
and practice are needed to learn, making mistakes is an essential 
part of learning, and failure is not due to a lack of innate ability. 
In controlled randomized studies with hundreds of students, 
certain groups of students (females and students with disabilities) 
reported decreased frustration and increased confidence levels 
when working with learning companions and increased frustration 
when companions were not present [26]. In addition, student 
enjoyment and interest were higher compared to students not 
given learning companions, suggesting that such affective 
pedagogical agents can impact students’ emotions [27, 28]. 
Moreover, students receiving companions described higher self-
efficacy in mathematics, and exhibited more productive behaviors 
within the tutor. 

3. PROCEDURE 
In the present study, while working within Wayang Outpost, 
students were periodically prompted to report their current 
affective state, using a simple dialogue box. The design of these 
prompts was based on prior work used to gather information on 
“the range of various emotional states during learning” [29], 
where affective states are placed on spectra ranging in valence 
from negative to positive. The following affective states were 
measured with a Likert scale (1-5): confidence, excitement, 
frustration and interest. Each of these scales is bipolar (e.g. 
confidence/anxiety). For simplicity we will refer to each of these 
bipolar scales as confidence, excitement, frustration and interest. 
In this article, a higher Likert score indicates a positive level of 
the affect in question (i.e., for confidence, 5 is Highly Confident, 
while 1 is Anxious). In the 2009 and 2011 data sets all four 
affects were examined, however for the 2013 data set only 
excitement and interest were measured via self-report. 

Recognizing emotion from log data involved a seven step process. 
First, mathematics problems that students were not expected to 
solve were removed (e.g., topic introductions and example 
problems). Second, the student data was batched to ensure each 
batch had a representative sample of all “ground truth” Likert 
scale self-reports for all four emotions. Third, missing values 
were imputed at the batch level using a multiple regression 
algorithm in SPSS [30], thus filling all cells of missing data with 
estimate values. Fourth, outliers were identified at the full data set 
level also using SPSS. Fifth, engineered features were computed 
from the initial raw log data; some rows of data (e.g. topic 
introduction problems & example problems where students were 
meant to observe rather than interact with the system) were 
removed at this level as well. Sixth, the data was split into ten 
data sets: one for each combination of year and the four affects to 

be detected (e.g. confidence 2009, excitement 2013, etc). Seventh, 
forward feature selection and a linear regression algorithm was 
run in Rapidminer [31] under batch cross validation [17] in order 
to build the ten regression models, one for detecting each of the 
four affects in each of the two sample groups, 2009 and 2011, and 
two for detecting excitement and interest in the 2013 data set (as 
only two emotions were self-reported in 2013). Step two (Data 
Cleaning & Batching), step five (Feature Engineering), and step 
seven (Model Creation--running the linear regression algorithm) 
will be addressed in greater detail.  

3.1 Data Cleaning & Batching 
Data was batched at the student level, meaning that the data from 
one student could span across more than one batch. The process 
of batching was not completely random as consideration was 
given to preserving roughly equal representations of the target 
self-reported affect in each batch. Thus, students were assigned to 
batches randomly several times, and each batch was examined to 
show how many times students had responded with each value of 
the Likert scale for a given affect. For example, if one batch 
included 80 instances of students responding with 1 (one) in terms 
of frustration (low frustration) and another batch included only 10 
instances of students with responses of 1 for frustration then that 
set of batches was rejected and batching was performed again. In 
some cases it was necessary to manually swap individual students 
between batches in order to maintain a balanced ratio of 
responses. The size and quantity of the batches were also limited 
by concerns of over representation. For example, in the 2011 data 
set there were only 10 reported cases of interest > 3 out of a total 
of 105 cases. The fact that less than 10% of our data reported a 
positive valence in interest for this data set partially explains the 
relatively poor results of the detector trained on 2011 data, and 
attempts to “balance” batches by making proportions of each 
Likert response across batches as equal as possible. It also 
addresses why the large 2009 data set is split into six batches 
while the much smaller 2011 data set could only be split into 
three batches. 

3.2 Feature Engineering 
The majority of the features were derived from eight low level 
descriptions of students’ behavior with each problem a student 
saw (Table 1). Each state first acts as an if-statement predicated 
that the statement preceding it is not true (e.g. if a student did not 
SKIP, then the problem is evaluated to see if they met the criteria 
of NOTR and so on). 

These eight simple student states were mutually exclusive and 
assigned per problem, i.e., for a given problem a student’s actions 
might be classified as ATT vs. SOF. From these seven features, 
21 new features were generated by looking at the prior 3 actions 
(i.e., NOTRLast3), each of which weighs a more recent instance 
more heavily than the one that preceded it; for instance, in 
NOTRLast3 the immediate preceding action is worth 3, the action 
before that is worth 2, and so on. The remaining features were 
patters of behaviors, derived from transitions from one student-
problem interaction state to another (e.g. NOTR→ATT means 
that the current student-problem interaction has a state of ATT, 
and the previous one had a state of NOTR). Due to the fact that 
several features were based on the prior three actions or prior 
three transitions between problems, the first four problems of any 
student’s work within Wayang were excluded from our analyses. 
This also means that, going forward, these detectors will only be 
usable after the student has already completed four problems.  
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Features also included running tallies of incorrect attempts, hints 
seen, problems solved on first attempt, and other assorted student 
actions aggregated over the current problem and prior three 
problems. Several hundred features were generated and only a 
small number were selected for use in models in this work; we 
limit our discussion to the features that were selected.  

Table 1.  Eight Low Level Student States 

Student State Description of student Behavior 

SKIP The student did nothing and skipped the 
problem. 

NOTR  

(Not Reading) 

The student made a first attempt to solve a 
problem in a time under 4 seconds –not 
enough time to even read the problem. 

GIVEUP The student took some action, but then 
skipped the problem without solving it. 

SOF (Solved on 
First Attempt) 

The student solved the problem on their first 
attempt, without seeing any help. 

BOTT (Bottom 
Out Hint) 

The student saw all hints available, including 
the last available hint that gave the answer. 

SHINT (Student 
Hint Request) 

Student answered the math problem 
eventually right, with at least 1 hint. 

ATT (Attempt) The student didn’t see any hints and solved it 
correctly after 1 wrong attempt. 

GUESS The student solved it correctly with no hints 
and more than 1 incorrect attempt. 

 

For the features shown in Table 2, “Avg” denotes an average 
taken across the prior four problems, “Last4” denotes the sum of 
the prior four problems, “Max” denotes the maximum number of 
actions in a given problem over the prior four problems, “Min” 
denotes the minimum number of actions in a given problem over 
the prior four problems, and % denotes the ratio of a particular 
action in the past four problems over the total actions in the past 
four problems. 

3.3 Model Creation 
 Once the batching of the data was finalized, each data set was 
split into the four subsets, each addressing the emotion in 
question: confidence, excitement, frustration, and interest. 
Initially, forward feature selection (with a limit of ten features) 
was carried out for each of the four types of affect for each data 
set, with student-level batch cross validation [17].  

Linear regression was performed in Rapidminer [31] on each of 
these new subsets under batch cross validation [17].  The models 
were assessed by Pearson’s R to determine their correlation with 
the target affect. Further, in order to create a discrete 
classification measure of affect, the Likert scale responses and 
linear regression model output were rounded to the nearest integer 
and then discretized as follows: All responses below 3 on the 
Likert scale were labeled as “negative”, all responses equal to 3 
were labelled “neutral”, and all responses above 3 were labeled as 
positive. These classification results were assessed using weighted 
kappa [32], which is a measure of agreement for polynomial 
classified targets. Similarly to typical Cohen’s kappa [33], a zero 
denotes agreement due to random chance, while a one denotes 
perfect agreement between the model and student self-reports of 
affect. 

While detector results obtained under batch cross validation 
should guard against overfitting, there is still the potential risk 
that the results may be overfit to the sample group used in the 
study. In particular, even with batch cross validation, all the 
batches are drawn from the same sample group, who may share 
various specific traits. Therefore, the batch cross validated models 
trained using the 2009 data set was applied to the 2011 & 2013 
data sets and vice-versa. This was done to provide a more 
conservative estimate of the models’ generalizablity to new data 
sets, given that the samples were collected from distinct groups of 
students at distinct points in time.  

Table 2.  Features from Students’ Interaction in Wayang 

AvgTimeToSolve – The average of time to solve a problem. 

LogTimePerAction – The logarithm log10 of the time per action 

AvgTimePerAction – The average time per action 

Hints – Total hints given on current problem 

Wrong – Total wrong attempts on the prior problem 

WrongLast4 – Total wrong attempts aggregated over the current 
and last 3 problems. 

MaxWrong – The maximum number of incorrect attempts 

MaxActions – The maximum number of actions 

MinWrong – The minimum number of incorrect attempts 

TimetoSolve – Time to solve a problem 

LogTimeInTutor – Logarithm log10 of student’s time in tutor. 

TimeInTutor – Total student’s time in tutor. 

MinTimePerAction – The minimum time per action of the past 4 
problems. 

MinLogTimePerAction – The minimum of the logarithm log10 
of seconds per action. 

TotalActions – The total actions of the prior problem. 

%Wrong – The percent of incorrect attempts. 

 

4. RESULTS 
4.1 Feature Selection 
Forward feature selection yielded a total of forty eight features. 
These features were split across ten different detectors/models, 
four for the 2009 data set, four  for the 2011 data set, and two for 
the 2013 data set where only self-reports on excitement and 
interest were collected. While there were ten models and ten 
features used per model, only 48 features were required rather 
than 100, because some features were used in more than one 
model. Twenty seven of these features were engineered from the 
states described in Table 1. Of the remaining twenty one features, 
sixteen were based on other student interactions within the system 
(see Table 2). Many of these features were based on student 
actions on an immediate given problem, but some denoted with 
“Avg”, “Max”, “Min” or “%” are based upon the current problem 
and three preceding problems: “Avg” denoting Average, “Max” 
denoting maximum, “Min” denoting minimum, and “%” denoting 
the percentage of a particular action out of the total actions taken 
over the current and prior three problems. 

The remaining five features (see Table 3) were based on students’ 
responses on the pretest, surveys, and the experimental 
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conditions. These features remain constant from problem to 
problem. 

Table 3.  Pretest and Agent Based Features 

Features Based on Survey Responses and Agent's Behavior 

CON – Baseline measure of confidence when problem solving. 

FRUS – Baseline measure of frustration when problem solving. 

INT – Baseline measure of interest towards problem solving. 

MathValuing – Baseline measure of the degree to which the 
student values mathematics. 

pre_lor –Student’s mastery orientation (willingness to learn new 
and interesting things in spite of challenge) based on a survey. 

 

4.2 Model Performance 
The R values of the linear regression models derived from the 
selected features achieved a fit comparable with prior work 
detecting frustration [34, 35], as well as boredom, confusion, and 
flow [35]. Specifically, prior work has achieved detectors of 
frustration with kappa values ranging from 0.16 to 0.32 [16], and 
boredom at kappa = 0.28 [16]. While the detectors presented in 
this paper may achieve slightly lower kappas than detectors 
presented in the above cited work, it’s important to note that our 
kappas are weighted [32], which suffer a penalty as compared to 
the typical Cohen’s kappa [33] that is meant for bivariate 
classification. Consequently our model distinguishes between 
three possible classifications rather than two. This increased the 
likelihood of accidental misclassification, but with the benefit of 
more sensitive measurement.  One cost of modeling affect as 
polynomial rather than binary is that binary classification has 
metrics for false and true positive and negative rates such as 
sensitivity and specificity [36] or A’ [37], which we cannot utilize 
in this work. 

It is important to note the sample size when considering the 
relative strength of each model. As previously mentioned the 
largest sample was found in the 2009 data set, where each model 
was built on an average of 1138 instances split across six batches. 
The 2011 data set contains 120 instances split across three 
batches. However, for the 2011 data set there were only ten 
instances of positively valenced interest. The particularly low 
values of interest in 2011 may explain why the 2009 derived 
model better predicts interest in that sample than the 2011 derived 
model. 

Tables 4 through 7 show performance indicators of each model, 
which consist of R values (indicating model fit) and weighted 
kappas [32] (denoted by “K”, indicating classification power into 
low/neutral/high levels). Each cell contains performance results 
for a model created from a dataset indicated by the column, and 
evaluated over a dataset indicated by the row. Note that values 
along the diagonal (in bold) correspond to testing and training 
over the same data set. In such cases, student level batch cross 
validation was used to prevent overfitting. The process of 
applying the model to the same data set (to generate estimates of 
the emotion) is thus slightly different than for other cells. Under 
batch cross validation, a separate model is generated (i.e. trained) 
for each batch, and estimations/classifications are made for the 
testing batch. The performance of six distinct models is thus 
aggregated in the end for the 2009 data set; the performance of 
three distinct models is aggregated in the 2011 data set); and the 

performance of two distinct models is aggregated in the case of 
the 2013 data set.  

Table 4.  Confidence Detector Performance (Pearson’s R & 
Cohen’s Kappa) 

 2009 Model 2011 Model 
2009 Data Set 
N = 1102 

R = 0.404  
K = 0.200 

R = 0.306   
K = 0.163 

2011 Data Set 
N = 127 

R = 0.515  
K = 0.249 

R = 0.238  
K = 0.147

 
Table 5.  Frustration Detector Performance (Pearson’s R & 
Cohen’s Kappa) 

 2009 Model 2011 Model 
2009 Data Set 
N = 1159 

R = 0.372   
K = 0.173 

R = 0.307  
K = 0.146 

2011 Data Set 
N = 125 

R = 0.374  
K = 0.139 

R = 0.341  
K = 0.281

 

Table 6.  Excitement Detector Performance (Pearson’s R & 
Weighted Kappa) 

 2009 Model 2011 Model 2013 Model 

2009 Data 
N = 1145 

R = 0.224  
K = 0.151

R = 0.211   
K = 0.083 

R = -0.089  
K = -0.022 

2011 Data 
N = 122 

R = 0.454  
K = 0.278 

R = 0.316  
K = 0.131 

R = -0.142  
K = -0.050 

2013 Data 
N = 66 

R = 0.004  
K = 0.102 

R = 0.201  
K = -0.024 

R = 0.137  
K = 0.192

 
Table 7.  Interest Detector Performance (Pearson’s R & 
Weighted Kappa) 

 2009 Model 2011 Model 2013 Model 
2009 Data 
N = 1145 

R = 0.240 
K = 0.090

R = 0.058   
K = 0.026 

R = 0.071  
K = -0.024 

2011 Data 
N = 105 

R = 0.300  
K = 0.140 

R = 0.174  
K = 0.005 

R = -0.001  
K = -0.036 

2013 Data 
N = 86 

R = 0.006  
K = 0.055 

R = 0.153  
K = -0.023 

R = 0.020  
K = -0.144

 

In general,  the results in Tables 4-7 show that: a) affect detectors 
for confidence/anxiety, excitement and frustration achieve 
reasonable levels of performance, while for interest/boredom, the 
R and Kappa values are much lower; b) models generated over 
larger datasets transfer better to smaller datasets, compared to  the 
other way round; c) models perform similarly well across 2009 
and 2011 but not as well over the 2013 dataset, which 
corresponded to a summer camp in a different part of the country; 
d) models created over the 2013 dataset don’t transfer well to the 
2009-2011 datasets either. These points will be explored in the 
discussion section.  

4.3 Linear Regression Models 
The linear regression models for the four affect states are 
displayed in Tables 8 through 11.  
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Table 8. Models of Confidence 

2009 Features Weight 2011 Features Weight 

NOTR→BOTT -53.00 GIVEUPLast3 75.77 

BOTT→GUESS -21.64 NOTR→BOTT -40.42 

GIVEUPLast3 -10.74 BOTT→BOTT 5.14 

SOFLast3 0.34 SOF→BOTT -4.96 

Pre_LOR 0.34 SOFLast3 1.06 

MinLogTimePerAction 0.31 Pre_LOR 0.87 

Wrong -0.20 MaxWrong 0.28 

WrongLast4 -0.07 WrongLast4 -0.27 

FRUS -0.04 CON 0.10 

CON 0.04 TimetoSolve 0.01 

 
Table 9. Models of Frustration 

2009 Features Weight 2011 Features Weight 

NOTR→NOTR -99.37 GUESS→NOTR -79.74 

GIVEUP 11.56 SHINT→NOTR -36.07 

GUESS→SOF -2.47 GIVEUP -22.85 

SHINT→SOF -1.58 SHINT -3.32 

%Wrong 0.66 SOF -1.77 

AvgTimePerAction -0.24 %Wrong 0.98 

WrongLast4 0.09 Pre_LOR -0.53 

TotalActions 0.05 INT -0.12 

FRUS 0.04 CON -0.09 

INT -0.04 MaxActions 0.08 

 
Table 10. Models of Excitement 
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BOTT→ 
NOTR -74.00 GIVEUP 35.24 

SHINT→ 
BOTT 66.89 

SOF→ 
NOTR -22.52 

BOTT→ 
SHINT 25.32 

SHINT→
SKIP -4.31 

Min 
Wrong -2.57 Pre_LOR -0.84 SKIP 2.80 

SOF→ 
BOTT 2.55 

Hints 
Seen -0.49 

SHINT→ 
SHINT 2.09 

Incorrect 
Attempts 0.14 INT -0.14 Pre_LOR -0.76 

INT -0.14 
Wrong 
Last4 0.05 

Hints 
Seen -0.36 

Wrong 
Last4 0.12 CON 0.05 CON 0.08 

Max 
Wrong -0.07 

LogTime 
InTutor -0.04 

AvgTime
ToSolve 0.01 

MinTime 
PerActio -0.01 

AvgTime 
PerAction -0.01 

TimeIn 
Tutor < 0.01 

TimeIn 
Tutor < 0.01 

AvgTime 
ToSolve < 0.01   

Table 11. Models of Interest 
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SOF→ 
SHINT 

1.16 GIVEUP 349.31 NOTR→ 
SOF 

30.20 

SHINT 1.06 GIVEUP 
→SOF 

-180.20 BOTT 19.68 

%Wrong -0.56 SHINT→ 
NOTR 

52.42 SOF→ 
GUESS 

-8.15 

SOF 0.41 SHINT→ 
SHINT 

26.43 SKIP→ 
SOF 

-7.33 

Pre_LOR 0.37 NOTR→ 
SOF 

-17.61 SHINT
→GUES

6.43 

INT 0.08 SOF→ 
NOTR 

17.00 LogTime 
InTutor 

-0.09 

Total 
Actions 

-0.05 BOTT→ 
BOTT 

7.14 Max 
Wrong 

-0.07 

MinTime 
PerActio

-0.02 Math 
Valuing 

0.09 INT 0.05 

TimeIn 
Tutor 

< 0.01 MinTime
PerAction 

0.03 TimeIn 
Tutor 

< 0.01 

  LogTime 
InTutor 

0.02   

 

5. DISCUSSION 
In this paper, we have proposed several models of affect based on 
students’ interaction with a tutoring system. In so doing, we have 
independently replicated prior work on sensor-free affect 
detection and contributed to existing work on predictive features 
of student affect and methods for building models of affect. In the 
following section we address opportunities and challenges 
regarding generalizability of the models to new populations. 

A major opportunity is to develop detectors which respond to 
differences between classrooms, schools, and even different 
regions of the country. We generated a rich set of features which 
combined student behaviors in the last problem seen, recent 
history, patterns of student behaviors, and even students’ affective 
background before starting the tutoring session. A combination of 
features from all these categories were best predictors for each 
affective state, showing that a variety of student descriptors as 
well as their behaviors can help to predict emotional states while 
learning.  

It is important to note that while some of the features we used 
bear a similarity to those in other research, the features are 
dependent on the environment from which they are inferred. 
Thus, validation is needed to ensure that these features transfer 
and apply to other tutoring systems, such as Wayang Outpost.  

In designing the features used, consideration was given to other 
detectors of affect [16, 38].  There is a tension between trying to 
use similar features from other systems, and recognizing features 
as being contextually distinct; this makes detector construction a 
custom work on each system. In the future, it is our hope to 
design even more informative features. This could be done by 
examining the data to look for patterns of behavior that align to 
affective states, and to observe students using the software for 
behaviors that might have been overlooked and could be 
indicators of affect. While examining the data in such a way could 
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“pollute” a researcher’s perspective and result in features that may 
overfit to a particular data set, this may be a necessary build 
generalizable detectors.  

Much of our feature selection work relied on the atheoretical 
approach of simple forward selection that yielded some features 
that may be only coincidentally correlated with our target affects. 
The best way to increase fidelity in identifying which features are 
true expressions of an affective state is to examine which 
coefficients remain similar in sign and magnitude across detectors 
built for different data sets. For example, in both confidence 
models generated, NOTR→BOTT enters into the regression 
model with a negative coefficient. This means that transitioning 
from responding to a problem in under four seconds to using a 
bottom out hint is negatively correlated with confidence, in both 
models generated over different data sets. Both of these behaviors 
seem expressions of disengagement, and other potentially 
disengaged student states like GIVEUP and GUESS also figure 
largely into both models. Unfortunately, the similarity in these 
states (as expressions of disengagement) may make the models 
more different than they need to be as in the case of 
NOTR→NOTR versus GUESS→NOTR in the case of frustration. 

The statistical power of using a larger and therefore likely more 
diverse data set is evident from our findings. In all cases (with the 
exception of frustration), the 2009 model outperforms the 2011 
when applied to the 2011 data set. The fact that the 2009 data set 
has about twice as many participants and roughly ten times as 
many affect reports may explain this trend. Thus, a larger and 
more diverse data set seems to generalize better to new samples 
and groups of students.  

Finally, it’s worth noting that the 2013 models transferred poorly 
to 2009 and 2011 datasets, and that the 2013 data set came from 
summer school students from the southwestern United States 
(Arizona & California). Models trained on the 2009 or 2011 data 
sets do not appear to generalize to the 2013 data set, or vice versa. 
We believe this is because the 2013 dataset was unique in several 
ways: it came from a different region of the country; it 
corresponded to students working in a summer program as 
opposed to during a typical school year; a slightly different 
version of Wayang Outpost was used. In addition, the 2013 
students only self-reported on two affective states: excitement and 
interest, but not confidence or frustration. While batch cross 
validation may address within sample distinctness between 
participants, it does little to address how well the model will 
perform when applied to a  distinct new sample group whose 
participants are distinct from the training group (e.g. summer 
school vs. not summer school, within a regular math class).  

Limitations of generalizability across samples might be the largest 
challenge, also found in other work. In a recent study [39], 
detectors trained on student sample groups from urban, suburban, 
and rural areas were shown to have difficulty generalizing to a 
different sample group. For example, a detector of Confusion 
trained on suburban students under batch cross validation 
achieved a kappa of 0.38 when applied to suburban students, but 
performed at chance when applied to rural students with a kappa 
of 0, and only slightly better when applied to urban students with 
a kappa of 0.06 [39]. This shows that while cross validation may 
provide a conservative estimate on how well a model may 
generalize to new data, the accuracy of this estimate is 
conditioned upon the training data being representative of the 
population to which the model is to be applied to.   
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